

PAP-003-1015025 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Physics-501: Mathematical Physics, Classical Mechanics & Quantum Mechanics (New Course)

Faculty Code: 003 Subject Code: 1015025

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Symbols have their usual meanings.
- (3) Figures to the right indicate marks.
- 1 (a) Answer the following objective questions:
 - 1. The Kronecker delta function, $\delta_{mn} = ----$ when m = n and $\delta_{mn} = ----$ when $m \neq n$.
 - 2. The Dirac delta function $\delta(x-a) = ----$ for $x \neq a$ and $\delta(x-a) = -----$ for x = a.
 - 3. Cosine series is applicable for even functions. True or False.
 - 4. Write the value b_n for an odd function (sine series.)
 - (b) Answer any one question :
 - 1. Explain f(x) = x, between limit- π to π .
 - 2. Explain f(x) = 0, for $-\pi \le x \le 0$ and f(x) = 1, for $0 \le x \le \pi$.
 - (c) Answer any one question:
 - 1. Explain Fourier integral.
 - 2. Explain the action of a full wave rectifier based on Fourier analysis.
 - (d) Answer any one in detail:
 - 1, What is Fourier series? Derive Fourier coefficients.
 - 2. Define Dirac delta function in one dimension and explain its representations.

2

3

5

- 2 Answer the following objective questions: 4 Write the equation of D' Alembert's principle. 2. Write the Lagrange's equation of motion in terms of generalized coordinates. The product $Q_i \delta q_i$ must have the dimension of 3. 4. Write the expression of generalized displacement. (b) Answer any one equation: 2 For a compound pendulum, kinetic energy $T = \frac{1}{2}I\dot{\theta}^2$ 1. and potential energy $V = -\text{mglcos}\,\theta$. Find the Lagrange's equation of motion. 2. The kinetic energy and potential energy of a simple harmonic oscillator are $T = \frac{1}{2}my^2$ and $V = \frac{1}{2}m\omega^2y^2$. Find the Lagrange's equation of motion. Answer any one question: 3 1. Explain D' Alembert's principle. 2. Obtain the equation of simple pendulum using Lagrange's equations. 5 Answer any one in detail: (d) Derive Hamilton's principle from D' Alembert's 1.
 - (d) Answer any one in detail :
 1. Derive Hamilton's principle from D' Alembert's principle.
 2. Deduce Newton's second law of motion from Hamilton's principle.
- 3 (a) Answer the following objective questions:

 In a conservative system, the potential energy is only position dependent. True or False.
 The specification of a point on the path in phase space provides _____ number of initial values.

 3. If \$\frac{\partial L}{\partial q_j} = 0\$, then \$q_j\$ is referred to as _____.
 - 4. A rigid body capable of oscillating in a vertical plane above a fixed horizontal axis is known as a _____ pendulum.

- (b) Answer any one question:
 - 1. Find the Hamiltonian for the Lagrangian

$$L(x, \dot{x}) = \frac{\dot{x}^2}{2} - \frac{\omega^2 x^2}{2} - ax^3 + \beta x \dot{x}^2.$$

2. Lagrangian of the system is

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}k(x^2 + y^2)$$
. Calculate p_x

and p_{v} .

- (c) Answer any one question:
 - 1. Explain the advantages of Hamiltonian approach.
 - 2. Obtain the Hamilton's equation for a linear harmonic oscillator.
- (d) Answer any one in detail:
 - 1. Explain conservation of angular momentum using Hamiltonian formulation.
 - 2. Derive the Hamilton's Canonical equations of motion.
- 4 (a) Answer the following objective questions:
 - 1. $[x, p_x] = -----$
 - 2. Write the one dimensional operator correspondence of energy and momentum.
 - 3. Emission of electrons from a metal surface when electromagnetic waves of suitable frequency falls on it is known as ------
 - $\int \psi^* \psi d\tau$ represents the probability of finding a particle in a given volume. True or False.
 - (b) Answer any one question:
 - 1. An electron of momentum 8×10^{-19} gm cm/sec is passed through a circular hole of radius 10^{-4} cm. What is the uncertainty introduced in the angle of emergence? Take $\hbar = 10^{-27}$ erg sec.
 - 2. A particle limited to the x-axis has the wave function $\psi = ax$, between x=0 and x=1; $\psi = 0$ elsewhere. What is the expectation value of the position $\langle x \rangle$ of the particle ?

2

3

5

4

2

(c) Answer any one question:

3

- 1. Explain the wave nature of matter.
- 2. Explain Compton effect and its experimental arrangement.
- (d) Answer any one question in detail:

5

- 1. Derive the one dimensional Schrodinger equation and extend it to three dimensions.
- 2. Obtain the normalized wave function of a particle in a three dimensional box.
- 5 (a) Answer the following objective questions:

4

- 1. The symbol of ket vector A is ----- and the symbol of bra vector of A is -----.
- 2. In quantum mechanics, $L_x = -i\hbar \left(y \frac{\partial}{\partial z} z \frac{\partial}{\partial y} \right)$.

True or False.

- 3. For a self adjoint operator, $\bar{\alpha} = ----$
- 4. The equation $\frac{\partial^2 u}{\partial y^2} 2y \frac{\partial u}{\partial y} + (\lambda 1)u = 0$ is known as

----- differential equation.

(b) Answer any one question:

2

- 1. If $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2$ then, prove that $[x, H] = \frac{i\hbar P}{m}$.
- 2. If $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2$, find [P, H].
- (c) Answer any one question:

3

- 1. Obtain the Schrodinger wave equation for an oscillator.
- 2. Obtain the equation for density operator.
- (d) Answer any one question in detail :

5

- 1. Find the solution of Hermite's differential equation.
- 2. Explain angular momentum operator and derive the expressions for L_x , L_y and L_z .
